
NAG C Library Function Document

nag_zgbbrd (f08lsc)

1 Purpose

nag_zgbbrd (f08lsc) reduces a complex m by n band matrix to real upper bidiagonal form.

2 Specification

void nag_zgbbrd (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n,
Integer ncc, Integer kl, Integer ku, Complex ab[], Integer pdab, double d[],
double e[], Complex q[], Integer pdq, Complex pt[], Integer pdpt, Complex c[],
Integer pdc, NagError *fail)

3 Description

nag_zgbbrd (f08lsc) reduces a complex m by n band matrix to real upper bidiagonal form B by a unitary

transformation: A ¼ QBPH . The unitary matrices Q and PH , of order m and n respectively, are
determined as a product of Givens rotation matrices, and may be formed explicitly by the function if

required. A matrix C may also be updated to give ~CC ¼ QHC.

The function uses a vectorisable form of the reduction.

4 References

None.

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: vect – Nag_VectType Input

On entry: indicates whether the matrices Q and/or PH are generated:

if vect ¼ Nag DoNotForm, then neither Q nor PH is generated;

if vect ¼ Nag FormQ, then Q is generated;

if vect ¼ Nag FormP, then PH is generated;

if vect ¼ Nag FormBoth, then both Q and PH are generated.

Constraint: vect ¼ Nag DoNotForm, Nag FormQ, Nag FormP or Nag FormBoth.

3: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08lsc

[NP3645/7] f08lsc.1

4: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

5: ncc – Integer Input

On entry: nC , the number of columns of the matrix C.

Constraint: ncc � 0.

6: kl – Integer Input

On entry: kl, the number of sub-diagonals within the band of A.

Constraint: kl � 0.

7: ku – Integer Input

On entry: ku, the number of super-diagonals within the band of A.

Constraint: ku � 0.

8: ab½dim� – Complex Input/Output

Note: the dimension, dim, of the array ab must be at least maxð1; pdab� nÞ when
order ¼ Nag ColMajor and at least maxð1; pdab�mÞ when order ¼ Nag RowMajor.

On entry: the original m by n band matrix A. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. The storage of elements aij, for

i ¼ 1; . . . ;m and j ¼ maxð1; i� klÞ; . . . ;minðn; iþ kuÞ, depends on the order parameter as
follows:

if order ¼ Nag ColMajor, aij is stored as ab½ðj� 1Þ � pdabþ kuþ i� j�;

if order ¼ Nag RowMajor, aij is stored as ab½ði� 1Þ � pdabþ klþ j� i�.

On exit: A is overwritten by values generated during the reduction.

9: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � klþ kuþ 1.

10: d½dim� – double Output

Note: the dimension, dim, of the array d must be at least maxð1;minðm;nÞÞ.
On exit: the diagonal elements of the bidiagonal matrix B.

11: e½dim� – double Output

Note: the dimension, dim, of the array e must be at least maxð1;minðm;nÞ � 1Þ.
On exit: the super-diagonal elements of the bidiagonal matrix B.

12: q½dim� – Complex Output

Note: the dimension, dim, of the array q must be at least maxð1; pdq�mÞ when vect ¼
Nag FormQ or Nag FormBoth and at least 1 otherwise.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix Q is stored in q½ðj� 1Þ � pdqþ i� 1�
and if order ¼ Nag RowMajor, the ði; jÞth e lement of the matr ix Q i s s tored in

q½ði� 1Þ � pdqþ j� 1�.
On exit: the m by m unitary matrix Q, if vect ¼ Nag FormQ or Nag FormBoth.

f08lsc NAG C Library Manual

f08lsc.2 [NP3645/7]

q is not referenced if vect ¼ Nag DoNotForm or Nag FormP.

13: pdq – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraints:

if vect ¼ Nag FormQ or Nag FormBoth, pdq � maxð1;mÞ;
otherwise pdq � 1.

14: pt½dim� – Complex Output

Note: the dimension, dim, of the array pt must be at least maxð1;pdpt� nÞ when vect ¼
Nag FormP or Nag FormBoth and at least 1 otherwise.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in pt½ðj� 1Þ � pdptþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in pt½ði� 1Þ � pdptþ j� 1�.

On exit: the n by n unitary matrix PH , if vect ¼ Nag FormP or Nag FormBoth.

pt is not referenced if vect ¼ Nag DoNotForm or Nag FormQ.

15: pdpt – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array pt.

Constraints:

if vect ¼ Nag FormP or Nag FormBoth, pdpt � maxð1; nÞ;
otherwise pdpt � 1.

16: c½dim� – Complex Input/Output

Note: the dimension, dim, of the array c must be at least maxð1;pdc� nccÞ when
order ¼ Nag ColMajor and at least maxð1; pdc�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix C is stored in c½ðj� 1Þ � pdcþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix C is stored in c½ði� 1Þ � pdcþ j� 1�.
On entry: an m by nC matrix C.

On exit: C is overwritten by QHC.

c is not referenced if ncc ¼ 0.

17: pdc – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if order ¼ Nag ColMajor,
if ncc > 0, pdc � maxð1;mÞ;
if ncc ¼ 0, pdc � 1;

if order ¼ Nag RowMajor, pdc � maxð1; nccÞ.

18: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08lsc

[NP3645/7] f08lsc.3

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, ncc = hvaluei.
Constraint: ncc � 0.

On entry, kl = hvaluei.
Constraint: kl � 0.

On entry, ku = hvaluei.
Constraint: ku � 0.

On entry, pdab ¼ hvaluei.
Constraint: pdab > 0.

On entry, pdq ¼ hvaluei.
Constraint: pdq > 0.

On entry, pdpt ¼ hvaluei.
Constraint: pdpt > 0.

On entry, pdc ¼ hvaluei.
Constraint: pdc > 0.

NE_INT_2

On entry, pdq ¼ hvaluei, m ¼ hvaluei.
Constraint: if vect ¼ Nag FormQ or Nag FormBoth, pdq � maxð1;mÞ;
otherwise pdq � 1.

On entry, pdc ¼ hvaluei, ncc ¼ hvaluei.
Constraint: pdc � maxð1; nccÞ.

NE_INT_3

On entry, kl ¼ hvaluei, ku ¼ hvaluei, pdab ¼ hvaluei.
Constraint: pdab � klþ kuþ 1.

On entry, m ¼ hvaluei, ncc ¼ hvaluei, pdc ¼ hvaluei.
Constraint: if ncc > 0, pdc � maxð1;mÞ;
if ncc ¼ 0, pdc � 1.

NE_ENUM_INT_2

On entry, vect ¼ hvaluei, m ¼ hvaluei, pdq ¼ hvaluei.
Constraint: if vect ¼ Nag FormQ or Nag FormBoth, pdq � maxð1;mÞ;
otherwise pdq � 1.

On entry, vect ¼ hvaluei, n ¼ hvaluei, pdpt ¼ hvaluei.
Constraint: if vect ¼ Nag FormP or Nag FormBoth, pdpt � maxð1;nÞ;
otherwise pdpt � 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

f08lsc NAG C Library Manual

f08lsc.4 [NP3645/7]

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies QBPH ¼ Aþ E, where

kEk2 � cðnÞ�kAk2;

cðnÞ is a modestly increasing function of n, and � is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

The computed matrix Q differs from an exactly unitary matrix by a matrix F such that

kFk2 ¼ Oð�Þ:

A similar statement holds for the computed matrix PH .

8 Further Comments

The total number of real floating-point operations is approximately the sum of:

20n2k, if vect ¼ Nag DoNotForm and ncc ¼ 0, and

10n2nCðk� 1Þ=k, if C is updated, and

10n3ðk� 1Þ=k if either Q or PH is generated (double this if both),

where k ¼ kl þ ku, assuming n � k. For this section we assume that m ¼ n.

The real analogue of this function is nag_dgbbrd (f08lec).

9 Example

To reduce the matrix A to upper bidiagonal form, where

A ¼

0:96� 0:81i �0:03þ 0:96i 0:00þ 0:00i 0:00þ 0:00i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i 0:00þ 0:00i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:00þ 0:00i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:00þ 0:00i 0:00þ 0:00i �0:17� 0:46i 1:47þ 1:59i
0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i 0:26þ 0:26i

1
CCCCCCA

0
BBBBBB@

:

9.1 Program Text

/* nag_zgbbrd (f08lsc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{

/* Scalars */
Integer i, j, kl, ku, m, n, ncc, pdab, pdc, pdq, pdpt;
Integer d_len, e_len;
Integer exit_status=0;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08lsc

[NP3645/7] f08lsc.5

NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *ab=0, *c=0, *pt=0, *q=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define AB(I,J) ab[(J-1)*pdab + ku + I - J]

order = Nag_ColMajor;
#else
#define AB(I,J) ab[(I-1)*pdab + kl + J - I]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08lsc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%ld%ld%ld%*[^\n] ", &m, &n, &kl, &ku, &ncc);

#ifdef NAG_COLUMN_MAJOR
pdab = kl + ku + 1;
pdq = m;
pdpt = n;
pdc = m;

#else
pdab = kl + ku + 1;
pdq = m;
pdpt = n;
pdc = MAX(1,ncc);

#endif
d_len = MIN(m,n);
e_len = MIN(m,n)-1;

/* Allocate memory */
if (!(ab = NAG_ALLOC((kl+ku+1) * m, Complex)) ||

!(c = NAG_ALLOC(m * MAX(1,ncc), Complex)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(pt = NAG_ALLOC(n * n, Complex)) ||
!(q = NAG_ALLOC(m * m, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
for (i = 1; i <= m; ++i)

{
for (j = MAX(1,i-kl); j <= MIN(n,i+ku); ++j)

Vscanf(" (%lf , %lf)", &AB(i,j).re, &AB(i,j).im);
}

Vscanf("%*[^\n] ");
/* Reduce A to bidiagonal form */
f08lsc(order, Nag_DoNotForm, m, n, ncc, kl, ku, ab,

pdab, d, e, q, pdq, pt, pdpt, c, pdc, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08lsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print bidiagonal form */
Vprintf("\nDiagonal\n");
for (i = 1; i <= MIN(m,n); ++i)

Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
if (m >= n)

Vprintf("\nSuper-diagonal\n");
else

f08lsc NAG C Library Manual

f08lsc.6 [NP3645/7]

Vprintf("\nSub-diagonal\n");
for (i = 1; i <= MIN(m,n) - 1; ++i)

Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n");

END:
if (ab) NAG_FREE(ab);
if (c) NAG_FREE(c);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (pt) NAG_FREE(pt);
if (q) NAG_FREE(q);

return exit_status;
}

9.2 Program Data

f08lsc Example Program Data
6 4 2 1 0 :Values of M, N, KL, KU and NCC

(0.96,-0.81) (-0.03, 0.96)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)

(0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)
(-0.17,-0.46) (1.47, 1.59)

(0.26, 0.26) :End of matrix A

9.3 Program Results

f08lsc Example Program Results

Diagonal
2.6560 1.7501 2.0607 0.8658

Super-diagonal
1.7033 1.2800 0.1467

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08lsc

[NP3645/7] f08lsc.7 (last)

	f08lsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	m
	n
	ncc
	kl
	ku
	ab
	pdab
	d
	e
	q
	pdq
	pt
	pdpt
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

